\qquad
\qquad
Given a term in a geometric sequence and the common ratio find the term named in the problem.

1) $a_{1}=4, r=2$

Find a_{10}

Find the common ratio, the term named in the problem, and the explicit formula.
2) $3,12,48,192, \ldots$

Find a_{10}

Evaluate each infinite geometric series described.
3) $2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27} \ldots$

Evaluate each geometric series described.
4) $a_{1}=-2, r=3, n=8$
5) $a_{1}=-3, a_{n}=-234375, r=5$

Evaluate each infinite geometric series described.
6) $\sum_{m=1}^{\infty}-3 \cdot\left(\frac{1}{2}\right)^{m-1}$

Given the explicit formula for a geometric sequence find the common ratio and the term named in the problem.
7) $a_{n}=-4^{n-1}$

Find a_{9}

Given two terms in a geometric sequence find the common ratio and the term named in the problem.
8) $a_{3}=12$ and $a_{6}=96$

Find a_{10}

Evaluate each geometric series described.
9) $\sum_{m=1}^{8} 2 \cdot 5^{m-1}$

Given the first term and the common ratio of a geometric sequence find the term named in the problem.
10) $a_{1}=3, r=-3$

Find a_{11}

Evaluate each geometric series described.
11) $-1+4-16+64 \ldots, n=9$
12) $4-20+100-500 \ldots, n=6$

Given the recursive formula for a geometric sequence find the common ratio and the term named in the problem.
13) $a_{n}=a_{n-1} \cdot-5$
$a_{1}=1$
Find a_{9}

Evaluate each geometric series described.
14) $a_{1}=2, a_{8}=256, r=2$

